Remarks on Suzuki’s knot epimorphism number
نویسندگان
چکیده
منابع مشابه
Remarks on General Fibonacci Number
We dedicate this paper to investigate the most generalized form of Fibonacci Sequence, one of the most studied sections of the mathematical literature. One can notice that, we have discussed even a more general form of the conventional one. Although it seems the topic in the first section has already been covered before, but we present a different proof here. Later I found out that, the auxilia...
متن کاملSome Remarks on Number Theory
This note contains some disconnected minor remarks on number theory . 1 . Let (1) Iz j I=1, 1<j<co be an infinite sequence of numbers on the unit circle . Put n s(k, n) _ z~, Ak = Jim sup I s(k, n) j=1 k=oo and denote by B k the upper bound of the numbers I s(k,n)j . If z j = e 2nij' a =A 0 then all the Ak 's are finite and if the continued fraction development of a has bounded denominators the...
متن کاملOn the subgraph epimorphism problem
In this paper we study the problem of deciding the existence of a subgraph epimorphism between two graphs. Our interest in this variant of graph matching problem stems from the study of model reductions in systems biology, where large systems of biochemical reactions can be naturally represented by bipartite digraphs of species and reactions. In this setting, model reduction can be formalized a...
متن کاملFurther remarks on the winding number
© Annales de l’institut Fourier, 1963, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Knot Theory and Its Ramifications
سال: 2019
ISSN: 0218-2165,1793-6527
DOI: 10.1142/s0218216519500603